首页> 外文OA文献 >Prediction of particulate matter concentration profile in an opencast copper mine in India using an artificial neural network model
【2h】

Prediction of particulate matter concentration profile in an opencast copper mine in India using an artificial neural network model

机译:基于人工神经网络模型的印度露天铜矿颗粒物浓度分布预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Springer Science+Business Media Dordrecht Particulate matter (PM) is a major pollutant in and around opencast mine areas. The problem of degradation of air quality due to opencast mine is more severe than those in underground mine. Prediction of dust concentration must be known to implement control strategies and techniques to control air quality degradation in the workplace environment. Limited studies have reported the dispersion profile and travel time of PM between the benches inside the mine. In this paper, PM concentration has been measured and modeled in Malanjkhand Copper Project (MCP), which is one of the deepest opencast copper mines in India. Meteorological parameters (wind speed, temperature, relative humidity) and PM concentration in seven size ranges (i.e., PM, PM, PM, PM, PM, PM, and PM) have been measured for 8 days. The results of the field study provide an understanding of the dispersion of the PM generated due to mining activities. This research work presents an approach to assess the exposure of enhanced level of PM concentration on mine workers and its variation with depth. The correlations study shows that concentration of PM during its travel from source to surface is associated with depth. Empirical equations are developed to represent relationships between concentrations of PM and depth. Artificial neural network (ANN) model showing the relationship between PM concentration and meteorological parameters has been developed. The performance of the ANN model is evaluated in terms of the correlation coefficient between the real and the forecasted data. The results show strong agreement between the experimental data and the modeled output. The findings of this work are important in understanding fine PM variation inside the mine at the workplace and the associated exposure of mine workers.
机译:施普林格科学+商业媒体多德雷赫特颗粒物(PM)是露天矿区内及其周围的主要污染物。露天煤矿导致的空气质量下降问题比地下煤矿严重。必须知道粉尘浓度的预测才能实施控制策略和技术,以控制工作场所环境中空气质量的下降。有限的研究报告了矿山内部工作台之间的PM扩散曲线和传播时间。在本文中,已经在Malanjkhand铜矿项目(MCP)中对PM浓度进行了测量和建模,该项目是印度最深的露天铜矿之一。在7个尺寸范围(即PM,PM,PM,PM,PM,PM,PM和PM)中,已测量了8天的气象参数(风速,温度,相对湿度)和PM浓度。现场研究的结果提供了对由于采矿活动而产生的PM分散的理解。这项研究工作提出了一种方法,以评估矿山工人暴露于增强的PM浓度水平及其随深度的变化。相关性研究表明,PM从源到地传播过程中的浓度与深度有关。建立了经验公式来表示PM浓度与深度之间的关系。已开发出显示PM浓度与气象参数之间关系的人工神经网络(ANN)模型。根据实际数据与预测数据之间的相关系数评估ANN模型的性能。结果表明,实验数据与模型输出之间具有很强的一致性。这项工作的发现对于理解工作场所矿山内部细微的PM变化以及矿山工人的相关暴露非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号